
Conway’s Game of Life: A Quantitative Evaluation*

Matvii Ustich, Mihály Tóth-Tarsoly and Tom Lam

School of Computer Science, University of Bristol
{oa24447,wq24423,ye24597}@bristol.ac.uk

Abstract

Conway’s Game of Life is a familiar optimisation problem involving the space- and time-efficient computation of iterations of a cellular
automaton. We implement Conway’s Game of Life using serial, parallel, GPU, and distributed approaches. Optimisations such as lookup
tables and bit-packing significantly reduce CPU overhead, with Rust outperforming Go, and a CUDA bit-packed kernel reaches near
state-of-the-art performance. The distributed architecture remains fault-tolerant under node failure and addition. Deployment is automated
using Terraform for seamless cloud scaling. The implementation of a halo-exchange scheme in Rust further improves scalability by
minimising communication. Analysis of results shows bit-packing and parallelism are the dominant performance factors.

1 Introduction

Conway’s Game of Life is a cellular automaton that uses
a world w of n× m pixels wrapping around at the edges,
where each cell can be either alive (1) or dead (0). The evolu-
tion for each cell wt(x, y) in current turn t with x ∈ [0, m− 1]
and y ∈ [0, n− 1], is calculated based on its neighbours, ac-
cording to the following rules, where nt(x, y) represents the
count of alive neighbours surrounding cell (x, y):

wt+1(x, y) = [nt(x, y) = 3]

∨
(
wt(x, y) ∧ [nt(x, y) = 2]

)
(1)

This evolutionary algorithm presents an interesting prob-
lem when considering parallel or distributed computations
of iterations of the automaton, because cells are dependent
on their neighbours. This restriction means that we cannot
simply just break up a grid into sections naively, because
each individual process must also have access to the edge
cells of its neighbouring grids. In addition, these edge cells
cannot just be communicated once, because they may change
as the simulation progresses.

2 Basic serial implementation

Perhaps the simplest way to implement the Game of Life
is by using a basic serial implementation, where each cell
is evolved individually in sequence. One complication that
must be dealt with is that cells on the edges have their
neighbours on the other side of the board.

A modulo-based method can be used to calculate the
coordinates of the neighbouring cells in order to look up
their values. In addition, instead of counting neighbours
directly, we represented cells as either 0 or 1, allowing a
simple sum to be calculated.

2.1 A lookup table

A more unique approach for calculating the next state for
given cells is by using a lookup table. An inspiration came
from reading chapters 17 and 18 from Abrash’s Book [1]. It
led to an interesting idea – by storing some metadata about

*Presented as a report for Computer Systems A

the given cells, we can deterministically compute their next
state without having to look at the neighbouring cells, which
should reduce the computational overhead. First, we change
the board structure so that cells are stored in triplets. Every
triplet has enough space to store the current and the next
states of three horizontally adjacent cells and the external
neighbour count for the current generation. Overall, the
structure can be represented as follows:

E NL NC NR CL CC CR NCL NCC NCR

15 14 13 12 11 10 9 8..6 5..3 2..0

E: 0 if cell is internal (no wrapping), 1 if an edge
NL, NC, NR: next life/death states for the left, centre and right cells respectively
CL, CC, CR: current life/death states for the left, centre and right cells respectively
NCL: external neighbour count for the left cell
NCC: external neighbour count for the centre cell
NCR: external neighbour count for the right cell

Figure 1: Triplet layout.

Although every cell can have up to 8 alive neighbours,
only 3 bits are dedicated to every external neighbour count.
This is because by summing up one of the external neigh-
bour counts with the right cell (e.g. NCL with NC), the total
neighbour count can be found. This means that one triplet
contains enough information to compute the next states for
the cells stored inside it. Therefore, a lookup table of size 216

can be constructed to find the next state of the bits described
by a triplet (i.e., table[triplet]=NL, NC, NR).

Once we have the lookup table and the world represented
by the list triplets, the next state of the world can be found
in two stages:

1. Iterate through the list of triplets, assigning the correct
values to NL, NC and NR using the lookup table.

2. Iterate through the updated list of triplets. For every cell
that has a different next state compared to the current
state, update external triplets’ neighbour counts. Make
current state equal to the next state.

The above allows us to advance the board state without
necessarily having to address every neighbour for every
cell, which should reduce computational overhead. The
difference in performance associated with this change can
be seen in Figure 2.

Conway’s Game of Life: A Quantitative Evaluation

Figure 2: Time to complete 1000 iterations using the serial implementa-
tion as the board size changes.

3 Parallel implementation

The first concurrent implementation attempted was one that
operates in parallel, across multiple worker routines. We ini-
tially implemented this in the Go programming language.1

3.1 A simple optimisation

An immediate possible optimisation is to replace the modu-
lus operation, which is computationally expensive, with a
counter that rolls over automatically. Interestingly, we didn’t
notice an increase in performance when we attempted this
change. To investigate this, we used the pprof tool, and we
noticed that a very large amount of time was being spent
on incrementing the for loop counter. When we looked at
the generated assembly, we found that Go’s compiler didn’t
unroll the for loop, which could be why it didn’t result in an
increase in performance. The profiling results can be seen
in Figure 3.

Figure 3: Profiling results of the initial, basic parallel implementation.

1 Go implements concurrency using goroutines, lightweight threads that
are managed by the Go runtime. They are conceptually separate from
operating system threads: multiple goroutines may operate in the same
OS thread.

3.2 Splitting up the board

When splitting up the board, it is important to ensure that
the board is split up in a way that maximises the utilisation
of each worker. This means that we keep track of the num-
ber of remainder board rows, and split them evenly across
the workers. A previous implementation used a simpler
algorithm that just assigned the remainder as one big job.
Interestingly, this change did not result in a large change, as
the results show.

3.3 Bit-packing with batch cell state
computation

Since the state of any given cell is either dead or alive, one
cell can be represented by a single bit. This leads to the
idea that we can use an n-bit word to represent n consec-
utive cells. In usual systems, the default size of a single
word is 64 bits; therefore, we can encode 64 cells in a single
word, drastically reducing memory usage compared to the
basic implementation. Because computers operate on whole
words, this hints that it is possible to update states of several
cells simultaneously without using concurrency. Studying
a paper discussing bitwise parallel bulk computation [2]
proved that we can update all cells in a single world without
having to treat each one of them individually. Assuming
the operating system is little-endian and the least significant
bit corresponds to the horizontally left-most cell, the algo-
rithm 1 can be used to compute the next states for 64 cells
simultaneously. First, the algorithm finds all neighbours as
shown in 4. Second, it computes the neighbour count for
every cell.

ind - wpr - 1 ind - wpr ind - wpr + 1

ind - 1 ind ind + 1

ind + wpr - 1 ind + wpr ind + wpr + 1

Figure 4: Words layout and their indices in the cells list; ind is an index
of the word in the middle and wpr stands for words per row

However, since neighbour count is in the range [0, 8] and
four bits are required to store it, we can’t use simple addi-
tion. Instead, we do the summation by creating four separate
words, which will then give us enough information to be
able to tell the neighbour counts for every cell deterministi-
cally. We use half- and full-adders to calculate w, x, y, z,
which are then used as follows:

1. w is used to make the cell alive if it has an odd number
of neighbours

2. y, z are used to keep the cell alive only if it has 2, 3, 6,
7 neighbours

3. x is used to make sure that no cell with more than four
neighbours survives

All of the conditions above applied in order to ensure that
the Game of Life rules are satisfied.

2

Conway’s Game of Life: A Quantitative Evaluation

Algorithm 1 Bit packing with batch computation
1: procedure NextWord(cells, ind, wordsPerRow)
2: // Find neighbours
3: top← cells[ind− wordsPerRow]
4: bottom← cells[ind + wordsPerRow]
5: le f t← (cells[ind]≪ 1) or (cells[ind− 1]≫ 63)
6: right← (cells[ind]≫ 1) or (cells[ind + 1]≪ 63)
7: topLe f t← (cells[ind− wordsPerRow]≪ 1)

or (cells[ind− wordsPerRow− 1]≫ 63)
8: topRight← (cells[ind− wordsPerRow]≫ 1)

or (cells[ind− wordsPerRow + 1]≪ 63)
9: bottomLe f t← (cells[ind + wordsPerRow]≪ 1)

or (cells[ind + wordsPerRow− 1]≫ 63)
10: bottomRight← (cells[ind + wordsPerRow]≫ 1)

or (cells[ind + wordsPerRow + 1]≪ 63)
11: // Stage 0
12: (l, i)← FullAdder(top, bottom, le f t)
13: (m, j)← FullAdder(right, topLe f t, topRight)
14: (n, k)← HalfAdder(bottomLe f t, bottomRight)
15: // Stage 1
16: (y, w)← FullAdder(i, j, k)
17: (x, z)← FullAdder(l, m, n)
18: // New word computation
19: newWord← cells[ind]
20: newWord← newWord or w
21: newWord← newWord and (y xor z)
22: newWord← newWord and not x
23: return newWord
24: end procedure

3.4 Results

Benchmarking this implementation, we can see that the
speed scales with the number of workers in Figure 5. How-
ever, the speedup slows down and eventually stops alto-
gether. This is a common theme with all of our concurrent
implementations. We believe this is caused by the limit
imposed by the number of physical cores in the computer.
In addition, as the board is split up more, there is a greater
overhead involved in splitting and reassembling the world,
as well as coordinating the threads.

3.5 Rust

Figure 5: Time to complete 1000 iterations of a 512x512 board for the
Rust parallel implementation, compared with other implementations.

We also implemented a parallel implementation using
Rust. A work-stealing thread pool was used from Rayon, a

data parallelism library. In order to satisfy Rust’s memory
safety constraints, we break up the updated world into sev-
eral disparate slices which are handed out to the threads.
In addition, another optimisation used was to represent
the world using a single one-dimensional array rather than
several nested two-dimensional arrays, which should theo-
retically perform better because the CPU does not have to
follow two pointers to reach the data, and hence potentially
improving caching.

We found that the basic Rust implementation was much
faster than the basic Go implementation, and even some-
times faster than the best Go bitpacking implementation. It
is likely that this is because of Rust’s use of manual memory
management instead of garbage collection.

4 CUDA implementation

4.1 CUDA programming model

GPU

Block Block

Block Block

VRAM

(a) GPU model

CUDA Block

Warp

T01 T02 T03 T04
.

T29 T30 T31 T32

Shared memory

(b) A CUDA block

Figure 6: CUDA programming model of a GPU

The GPU is specialized for parallel computation given
its higher memory bandwidth and density of transistors
for data processing rather than control logic, unlike a CPU.
It consists of an array of Streaming Multiprocessors (SM)
that execute warps of threads in parallel with SIMD-like
instructions. The work is scheduled on the SM as blocks
which are independent from each other. Each block consists
of its own shared memory on the chip which provides a
much highly access rate compared to the off-chip global
memory (VRAM).

4.2 Basic implementation

We defined the size for each block to be 32× 8, which means
each block consists of 256 threads. For the kernel launch
in each thread, it fetches and sums its 8 neighbours from
the global memory in VRAM and applies the life rule to
compute the next state for the cells. To integrate the CUDA
kernel with the Go SDL window, we used CGO2 to create
bindings to the external CUDA functions. We only allocate
CUDA memory once, at the start of the simulation in Go,
and free the memory when the controller is terminated.

2 An interface layer to call C code from within Go.

3

Conway’s Game of Life: A Quantitative Evaluation

4.3 Bit-packing implementation

We implemented the same algorithm 1 used for Go parallel.
Having experimented with different memory block sizes, we
converged on a configuration of 8× 8. Although large block
sizes (e.g. 32× 8) offer better memory coalescing, allowing
warps3 to read wider consecutive words from the global
memory, our kernel is potentially dominated by arithmetic
operations, large amount of registers per thread and branch
divergence caused by separately handling boundary words.
Smaller blocks enable the GPU to schedule more blocks
on the SM concurrently, hence allowing more warps to
be executed simultaneously, hiding the latency from both
memory access and branch divergence.

4.4 Result evaluation

Figure 7: Average time for each iteration with varying number of grid
pixels in CUDA

Figure 8: Average time to complete 1000 turns of 512x512 in Go with
SDL window rendering for various CUDA implementations

To compute the raw performance of our CUDA kernels
and compare them against the state of the art approaches
in Table 1, we only retrieve the last turn result from GPU

3 A group of 32 threads that are executed simultaneouly with SIMT.

Our basic
(RTX A2000)

Our bit-packing Fujita et al. [2]
(GTX Titan X)

Dijkstra et al. [3]
(GTX 1080 Ti)

2.077× 1010 9.344× 1011 1.990× 1012 5.389× 1012

Table 1: Maximum measured performance (cell updates/s) of the state-of-
the-art CUDA-based GoL implementations

after all iterations are finished, eliminating the performance
deterioration caused by memory allocations and copies. Our
bit-packing and basic algorithm achieve remarkable results
of 9.344 × 1011 and 2.077 × 1010 cell updates per second
respectively. However, it could still be further optimized by
using a multi-step kernel, performing multiple steps of the
simulation from a single inital load from the global memory
to reduce memory traffic, using assembly instructions to
replace some of the arithmetic operations in the next state
calculation, and the use of a wrap shuffle to share vertical
halos without accessing shared or global memory.

5 Distributed implementation

We also attempted an implementation that works across
computers using a distributed architecture. The system, as
shown in Figure 9, was split up into separate programs with
a separation of concerns; a controller, which acts as a client;
a broker, which co-ordinates the workers and breaks up
and reassembles results; and workers, which do the actual
computation. Communication between these components
was implemented using RPC calls.

Worker discovery was implemented using the publish-
subscribe model. This was to ensure maximum flexibility,
and to remove the requirement for the broker to know the
IP addresses of each individual worker. This also simplifies
deployment to the cloud.

In this way, when the worker starts up, it connects to
the broker and sends a subscription request with an RPC
call. The broker accepts the worker onto its list of sub-
scribers, and opens an RPC client connection. This gives
great flexibility in dealing with workers individually, and
allows implementation of fault tolerance.

In order to deal with the halo problem, a so-called coupled
halo exchange was implemented. Here, the broker sends the
additional halos required for each job to be completed to
the workers.

Benchmarking the basic distributed implementation As
expected, the distributed implementation scales well with
the number of workers added, up to a point. However, send-
ing the board back and forth every turn has high bandwidth
requirements, and slows down the simulation.

5.1 Parallel workers

We also implemented parallel processing of the world slice
for our bit-packing implementation on CPU, using the tech-
niques previously discussed. Due to the limited number of
threads available on a single computer, this implementation
cannot be run properly locally, and requires the deployment
of workers in the cloud. We were unable to run instances
with enough vCPUs to be able to collect meaningful data,

4

Conway’s Game of Life: A Quantitative Evaluation

Figure 9: The Go distributed architecture

Figure 10: Average time (sec) per 1000 turns of 512x512 for various
distributed implementations on AWS

as the limit was set at 1vCPU per instance, making parallel
workers meaningless. When it was tested locally, it resulted
in a performance improvement. This can be seen in Figure
11

Implementation Time (s)
Bit-packing 324.8
Parallel worker 325.9

Table 2: Performance comparison of parallel worker, with 4 workers each
with 4 threads, and 4 bit-packing workers, on a 5120× 5120 board for
1000 turns.

Figure 11: Average time (sec) per 1000 turns of 512x512 board for
different number of threads and workers for bit packing distributed imple-
mentation running on M3 Pro chip

5.2 Fault tolerance

Our current Go implementation of the distributed game of
life has reasonably robust fault tolerance. Our worker pool
works using a publish-subscribe model where the workers
will each call the subscribe RPC endpoint on the broker to
register its IP address at the start. If a worker disconnects
from the simulation while it is running, the broker will put
the job back to the jobs channel and wait for another avail-
able worker to acquire the job. If there are no workers in
the worker pool while the simulation is running, the simu-
lation will come to a halt but the simulation state (running,
paused) is still preserved, keypresses will still work and the
simulation will resume from the state where it is left off
after a new worker is connected.

5.3 SDL Live View

To return each completed turn and its world state to the con-
troller for visualisation, we implemented a WebSocket con-
nection between the broker and the local controller in Figure
12. Compared to RPC, WebSockets have a smaller message
overhead, helping to minimise latency. Because WebSockets

5

Conway’s Game of Life: A Quantitative Evaluation

Figure 12: The proposed multi-viewer design for the game of life simula-
tion

run over TCP and support sending JSON-encoded objects,
they allow efficient transfer of the AliveCells list. They also
support multiple simultaneous client connections, enabling
multiple views and even potentially web-based interfaces in
the future.

5.4 Rust

As an extension to the main task, we also wrote a version
of the distributed implementation in Rust. As simple RPC
calls were not available, the gRPC framework was chosen to
communicate between the programs. This involved writing
a Protobuf definition for the services and their behaviour.

Figure 13: Performance comparison between Rust distributed system
with Halo Exchange and the Go distributed system

Halo Exchange One of the biggest differences between the
Go implementation and the Rust implementation is that
the Rust implementation uses a full halo exchange scheme.
This solves the halo problem in an elegant way; rather than
having to send back the board section to the broker after
each iteration and reassemble the board before sending it
again for the next turn, the workers instead communicate
with each other, in a peer-to-peer architecture. The role of
the broker shifts instead to a much more supervisory role;
it sends a synchronising pulse to signal a turn should start,
and splits up the board initially. Other than this, the workers
operate entirely independently.

On the worker, when a turn is signalled, it sends a request
to the workers holding the halos that it requires to complete
a turn. Once these are received, it can compute the updated
board state. Before this can be persisted however, it must
wait until it has already received halo requests from the

other workers. This is to ensure that it doesn’t continue
before the other workers have received the initial halo. When
a board state update is required by the controller, the turn
signalling is paused, and the broker requests the board state
using a separate RPC call.

This architecture greatly reduces the data transfer occur-
ring as only the halos have to be exchanged. This increases
performance, especially for larger boards, where the amount
of data being transferred every turn becomes increasingly
significant. A diagram showing the architecture can be seen
in Figure 14.

Benchmarking the halo exchange We benchmarked the
Rust halo exchange implementation against the basic dis-
tributed implementation with no SDL, bit packing or parallel
workers so that they could be fairly compared. As seen in
Figure 13, we found that the halo exchange scheme has far
greater performance, with significantly reduced turn times.
The use of a 5120× 5120 board was required; the 512× 512
board was completed too quickly by the Rust implementa-
tion, and the ticker was too slow to capture differences.

Controller

Ticker

Broker

TaskSignal Loop

Worker Clients

RPC Server

Worker Pool

Worker 1

Worker 2

Worker 3

Worker 4

Figure 14: Diagram of the Rust distributed architecture using a Halo
Exchange scheme.

5.5 Scalability

In our Go distributed implementation, we used Terraform as
our infrastructure management framework to automate the
deployment of AWS nodes using shell scripts, as shown in
Figure 9. Each instance is launched from a custom AMI with
all dependencies preconfigured, pulls the latest version of
the repository, and starts the server to establish connections
between the broker and workers. This approach greatly
improved our efficiency and allowed us to benchmark using
arbitrarily large numbers of instances.

References

[1] Michael Abrash. Michael Abrash’s Graphics Programming
Black Book, Special Edition. Coriolis Group, 1997.

[2] Toru Fujita, Koji Nakano, and Yasuaki Ito. “Fast Sim-
ulation of Conway’s Game of Life Using Bitwise Par-
allel Bulk Computation on a GPU”. In: Int. J. Found.
Comput. Sci. 27 (2016), pp. 981–. url: https://api.
semanticscholar.org/CorpusID:32397603.

[3] Julia Dijkstra and Jonathan Brouwer. Game of Life: How
a nerdsnipe led to a fast implementation of Game of Life.
Accessed: 2025-11-16. June 2023. url: https://binary-
banter.github.io/game-of-life/.

6

https://api.semanticscholar.org/CorpusID:32397603
https://api.semanticscholar.org/CorpusID:32397603
https://binary-banter.github.io/game-of-life/
https://binary-banter.github.io/game-of-life/

	Introduction
	Basic serial implementation
	A lookup table

	Parallel implementation
	A simple optimisation
	Splitting up the board
	Bit-packing with batch cell state computation
	Results
	Rust

	CUDA implementation
	CUDA programming model
	Basic implementation
	Bit-packing implementation
	Result evaluation

	Distributed implementation
	Benchmarking the basic distributed implementation
	Parallel workers
	Fault tolerance
	SDL Live View
	Rust
	Halo Exchange
	Benchmarking the halo exchange

	Scalability

